skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whelan, Kevin R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mangrove ecosystems in the Caribbean are frequently exposed to hurricanes, leading to structural and regenerative change that elicit calls for recovery action. For those mangroves unaffected by human modifications, recovery can occur naturally. Indeed, observable natural recovery after hurricanes is the genesis of the “disturbance adaptation” classification for mangroves; while structural legacies exist, unaltered stands often regenerate and persist. However, among the >7,000 islands, islets, and cays that make up the Caribbean archipelago, coastal alterations to support development affect mechanisms for regeneration, sediment distribution, tidal water conveyance, and intertidal mangrove transgression, imposing sometimes insurmountable barriers to natural post-hurricane recovery. We use a case study approach to suggest that actions to facilitate recovery of mangroves on Caribbean islands (and similar settings globally) may be more effective when focusing on ameliorating preexisting anthropogenic stressors. Actions to clean debris, collect mangrove propagules, and plant seedlings are noble endeavors, but can be costly and fall short of achieving recovery goals in isolation without careful consideration of pre-hurricane stress. We update a procedural framework that considers six steps to implementing “Ecological Mangrove Restoration” (EMR), and we apply them specifically to hurricane recovery. If followed, EMR may expedite actions by suggesting immediate damage assessment focused on hydrogeomorphic mangrove type, hydrology, and previous anthropogenic (or natural) influence. Application of EMR may help to improve mangrove recovery success following catastrophic storms, and reduce guesswork, delays, and monetary inefficiencies. Key words: ecological mangrove restoration, EMR, genetic considerations, hydrogeomorphic type, regeneration, resiliency bottlenecks, tropical cyclones 
    more » « less
  2. Abstract Rates of organic carbon (OC) burial in some coastal wetlands appear to be greater in recent years than they were in the past. Possible explanations include ongoing mineralization of older OC or the influence of an unaccounted‐for artifact of the methods used to measure burial rates. Alternatively, the trend may represent real acceleration in OC burial. We quantified OC burial rates of mangrove and coastal freshwater marshes in southwest Florida through a comparison of rates derived from210Pb,137Cs, and surface marker horizons. Age/depth profiles of lignin: OC were used to assess whether down‐core remineralization had depleted the OC pool relative to lignin, and lignin phenols were used to quantify the variability of lignin degradation. Over the past 120 years, OC burial rates at seven sites increased by factors ranging from 1.4 to 6.2. We propose that these increases represent net acceleration. Change in relative sea‐level rise is the most likely large‐scale driver of acceleration, and sediment deposition from large storms can contribute to periodic increases. Mangrove sites had higher OC and lignin burial rates than marsh sites, indicating inherent differences in OC burial factors between the two habitat types. The higher OC burial rates in mangrove soils mean that their encroachment into coastal freshwater marshes has the potential to increase burial rates in those locations even more than might be expected from the acceleration trends. Regionally, these findings suggest that burial represents a substantially growing proportion of the coastal wetland carbon budget. 
    more » « less